If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2=130
We move all terms to the left:
9x^2-(130)=0
a = 9; b = 0; c = -130;
Δ = b2-4ac
Δ = 02-4·9·(-130)
Δ = 4680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4680}=\sqrt{36*130}=\sqrt{36}*\sqrt{130}=6\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{130}}{2*9}=\frac{0-6\sqrt{130}}{18} =-\frac{6\sqrt{130}}{18} =-\frac{\sqrt{130}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{130}}{2*9}=\frac{0+6\sqrt{130}}{18} =\frac{6\sqrt{130}}{18} =\frac{\sqrt{130}}{3} $
| 4x-32+3x+4=180 | | (×/8)+(x/7)=7/16 | | x/12=6=-8 | | 23-39/x=-16 | | 4(-1/4a-4)=(7/4a-3) | | 26+17/x=-8 | | 1/4m+5=7 | | 6k^2+12k+15=-10 | | 3(x+0.1)=4(x-1.01)+2.4 | | 4u+32=12u | | 16y-7y=63 | | 18v=19v+16 | | 0.99d=0.79d+5 | | -9=7-4x | | -3=7-4x | | -243=-9(x+10) | | -32=1/5n-40 | | 12=2r | | 3x+2/4=x+6/2 | | 4(2x-3)-2=3x+16 | | 45+2.50=3.75g | | y=13(5) | | -2(0.5w+1)=-4(2+w) | | 7x0.2x=5x0.3x | | 2x-8/5=2 | | -x-7=-6x-13 | | 2/5k+6=-4 | | -2(2y-8)=-3(y-3) | | 9(x+10)=3x(x+6) | | (3x+1)^2=4 | | 206-6m=140 | | (12t+24)=t+ |